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Abstract

Animacy—whether an entity is alive and sen-
tient—is fundamental to cognitive processing,
impacting areas such as memory, vision, and
language. However, animacy is not always
expressed directly in language: in English it
often manifests indirectly, in the form of selec-
tional constraints on verbs and adjectives. This
poses a potential issue for transformer language
models (LMs): they often train only on text,
and thus lack access to extralinguistic informa-
tion from which humans learn about animacy.
We ask: how does this impact LMs’ animacy
processing—do they still behave as humans do?
Like previous studies, we find that LMs behave
much like humans when presented with enti-
ties whose animacy is typical. However, we
also show that even when presented with sto-
ries about atypically animate entities, such as
a peanut in love, LMs adapt: they treat these
entities as animate, though they do not adapt as
well as humans. Even when the context indicat-
ing atypical animacy is very short, LMs pick up
on subtle clues and change their behavior. We
conclude that despite the limited signal through
which LMs can learn about animacy, they are
indeed sensitive to the relevant lexical semantic
nuances available in English.

1 Introduction
Animacy plays a significant role in cognitive pro-
cessing, as evidenced by the fact that animate enti-
ties are easier to remember and prioritized in visual
processing (Nairne et al., 2013; New et al., 2007;
Bugaiska et al., 2019). It is so important that even
young children can distinguish animate and inani-
mate entities (Rakison and Poulin-Dubois, 2001),
and these are processed in distinct domain-specific
brain regions (Caramazza and Shelton, 1998).

Animacy distinctions also manifest in language;
however these distinctions may appear indirectly.
In English, they often take the form of selectional
constraints that limit the use of certain verbs or
adjectives with in/animate entities: for example,

only animate entities can walk or think. So, while
animacy is a rich distinction at the cognitive level,
at the linguistic level, its signal is muted.

Today’s pre-trained transformer language mod-
els (LMs), however, are trained only on linguistic
input. If they are to learn to process animacy, they
must thus do so only from its downstream effects
in text, unlike humans, who use visual and physical
stimuli. We therefore ask: do such LMs respond to
animacy in language as humans do?

We answer this by treating LMs as psycholin-
guistic test subjects, probing how they react to vio-
lations of animacy-related selectional constraints.
Like prior work (Warstadt et al., 2020; Kauf et al.,
2022), we first study LMs’ responses in scenarios
involving typical animacy. In such situations, ani-
macy is a simple mapping between an object (e.g. a
peanut) and its usual animacy (inanimate). We find
that like humans, LMs generally prefer sentences
that respect animacy-related selectional constraints,
assigning higher probabilities to such sentences.

Unlike prior work, we also study atypical ani-
macy. We draw on Nieuwland and van Berkum
(2006), which measured human N400 responses
in scenarios with atypically animate entities like a
peanut in love. We compare LM surprisal to human
N400 brain responses and find that like humans,
LMs are initially surprised to encounter entities like
a peanut in love, but quickly adapt, becoming less
surprised. Stronger LMs are more able to replicate
the large magnitude of human N400 reduction.

Given LMs’ success at adapting to atypical an-
imacy with a long context, we test them on short
sentences about atypically animate entities, and
measure the extent to which their outputs reflect
this atypical animacy. We find that even with lim-
ited context, LMs adapt their output distribution,
treating the entity as animate. We conclude that,
despite training without the modalities that humans
use to learn about animacy, LMs respond to shifting
animacy in a surprisingly human-like way.



2 Related Work

2.1 Animacy in Language

Animacy in cognition is often framed as a gradient
phenomenon (de Swart and de Hoop, 2018). In
language, this often simplifies to a tripartite hier-
archy (humans > animals > objects) or a binary
(humans & animals > objects); entities are distin-
guished synactically or morphologically by their
position therein (Comrie, 1989).

Animacy exists at both the type level (e.g. dogs >
rocks) and the token level (e.g. a specific rock in a
story might be animate, though rocks are typically
not). Moreover, linguistic animacy is based not
only on biology, but also on the speaker’s closeness
and empathy with the entity in question (Kuno and
Kaburaki, 1977); thus a speaker might treat their
dog as more animate than an unknown dog.

The precise effects of animacy in language vary
cross-linguistically, from explicit animacy marking
to more indirect effects as in English. The latter
include not only not only strict animacy-based se-
lectional constraints (Caplan et al., 1994), but also
more subtle grammatical influences (Rosenbach,
2008; Bresnan and Hay, 2008). For example, an-
imate entities are more often mentioned first in a
sentence, even if doing so produces less common
constructions, such as the passive (Ferreira, 1994).

Here, we focus on the human / inanimate ob-
ject dichotomy, and the animacy-based selectional
constraints thereby imposed; this strong contrast
should produce easier-to-measure effects in LMs.

2.2 LMs as Test Subjects

We study the behavior of LMs by treating them as
psycholinguistic test subjects, a popular approach.
One such line of work analyzes LMs by using the
probability they assign to a sentence as a proxy for
acceptability judgments. Generally, such studies
provide pairs of sentences, one acceptable and one
not; LMs must assign the more plausible sentence
a higher probability. This method has been used
to study LMs’ processing of negation, subject-verb
agreement, and more (Ettinger, 2020; Linzen et al.,
2016; Warstadt et al., 2020; Sinclair et al., 2022).

Other work compares LMs to humans by using
surprisal—the negative log probability of a string—
to estimate measures of cognitive effort during text
processing. LM surprisal is versatile, and well-
correlated with reading times, eye-tracking fixa-
tions, and EEG responses (Smith and Levy, 2013;
Aurnhammer and Frank, 2018; Michaelov and

Bergen, 2020); moreover, surprisal from stronger
LMs provides better predictive power (Goodkind
and Bicknell, 2018; Wilcox et al., 2020).

We use LM surprisal to predict the N400 brain
response, which is elevated at semantically unusual
content, like animacy-related selectional constraint
violations. Studies have found that a word’s sur-
prisal correlates with human N400 response thereto
(Frank et al., 2013, 2015; Michaelov et al., 2022);
transformer LMs are the state of the art for this
(Merkx and Frank, 2021; Michaelov et al., 2021).

2.3 Animacy in LMs

Prior work has assessed LMs’ animacy-processing
capabilities; however, most work focuses only on
typical animacy. Animacy is one phenomenon
tested by BLiMP (Warstadt et al., 2020), which
we revisit in Section 4. Kauf et al. (2022) inves-
tigate animacy as part of LMs’ generalized event
knowledge; they find that LMs are sensitive to (typ-
ical) animacy as pertains to selectional constraints.

We move beyond typical animacy to atypical
animacy by using LM surprisal to replicate Nieuw-
land and van Berkum’s (2006) studies on human
N400 response to atypical animacy. Contempora-
neous work (Michaelov et al., 2023) replicates one
of these experiments in the original Dutch. In con-
trast, we replicate all experiments from Nieuwland
and van Berkum (and Boudewyn et al. (2019)).
These highlight situations in which models can
capture general trends, but fail to capture low-level
nuances. Moreover, by studying a diverse set of
English LMs, we can identify how LMs’ strength
affects their predictive power.

3 Models
We experiment with these models: GPT-2 small,
medium, large, and XL (Radford et al., 2019); OPT
2.7B, 6.7B, and 13B (Zhang et al., 2022); and
LLaMA 7B, 13B and 30B (Touvron et al., 2023).1

We choose open-source models, to make our work
more replicable. We use autoregressive LMs, as we
need to compute probabilities for whole sentences.

4 Typical Animacy
We test models’ responses to animacy in situations
where the animacy of a given token, or instance
of entity, aligns with the animacy of its type more
generally (e.g. cats are animate; rocks are not).

1The names of OPT and LLaMA models indicate (approxi-
mate) parameter counts; the GPT-2 models have 117M, 345M,
762M, and 1.5B parameters respectively.



Acc? Sentence
T Yes Naomi had cleaned a fork.
T No That book had cleaned a fork.
P Yes Lisa was kissed by the boys.
P No Lisa was kissed by the blouses.

Table 1: BLiMP examples: we provide one example
each from the Transitive and Passive datasets. Each is a
minimal pair of sentences: one Acceptable and one not.
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Figure 1: Model accuracy on BLiMP. Models match
humans in the transitive, but not passive setting.

Experiment We test the models in Section 3
on the animate-transitive and animate-passive
datasets of the BLiMP benchmark (Warstadt et al.,
2020). Each dataset contains 1,000 minimal pairs
of synthetic English sentences that differ only by
one or two words (Table 1). By construction, one
sentence respects animacy constraints; the other vi-
olates them. We evaluate models on these datasets
by computing the probability it assigns to each
sentence of each minimal pair. A model gets an
example correct if it assigns higher probability to
the sentence that respects the animacy constraint.
We compute model accuracy over each dataset.2

Results Figure 1 displays results for each model.
It also includes human baselines, reported directly
from Warstadt et al. (2020), which indicate the
proportion of examples where annotators preferred
the acceptable sentence of the given minimal pair.
Random performance for both datasets is 50%.

Models attain high performance in both scenar-
ios. On transitive examples, they reach over 80%
accuracy; some models prefer the sentence that
respects animacy constraints more often than hu-
mans do (>87%). In the passive scenario, the gap

2The code is available in the supplementary material, to be
released if accepted; implementation details are in Appendix A

between models (80%) and humans (86%) is wider.
This difference between the transitive and pas-

sive cases may be due more to setup differences
than distinct animacy processing in the two scenar-
ios. In the passive case, the target word is always
in the last position, so model performance is deter-
mined only by the target’s probability. In contrast,
the target word is not the final token in the transi-
tive case, so model success is determined by the
probability of a longer string.

Discussion Our results indicate that models re-
spect animacy constraints in typical scenarios: they
match human performance on the transitive dataset,
and are close behind on the passive. However, this
test cannot distinguish between a model that truly
understands animacy, and one that just associates
words (types) with other words that reflect that
word’s typical animacy. For example, the model
might simply associate a word like “shoe” with
verbs that take inanimate objects, without under-
standing that the inanimacy of an individual shoe is
what prohibits its use with animate-selecting verbs.

To solve this problem, our analysis must move
beyond type-level animacy, and test models’ pro-
cessing of animacy at the token level. We thus test
models’ responses to entities whose token-level ani-
macy is atypical, distinct from their usual type-level
animacy. If models process these entities accord-
ing to their type-level animacy, their understanding
of animacy is rather shallow. In contrast, models
that process entities according to their token-level
animacy may better understand animacy in full.

5 Atypical Animacy

In this section, we attempt to determine if LMs can
capture animacy not only at the type-level, but also
at the token-level. We do so by comparing model
and human responses in cases of atypical animacy,
where entities’ canonical type-level animacy and
their actual token-level animacy differ.

For human data, we turn to two similar studies—
Nieuwland and van Berkum (2006) and Boudewyn
et al. (2019)—that relied on the N400, a brain re-
sponse measured via EEG that is elevated when pro-
cessing semantically anomalous input. Both stud-
ies measured participants’ N400 responses while
they read cartoon-like stories where a typically
inanimate entity acted as animate (Figure 2). Both
found that while participants were initially sur-
prised by the atypically animate entity, they quickly
adapted, yielding low N400 responses to the entity.



A nurse was talking to the sailor/oar [1] who had been
in a violent boating accident. The sailor/oar cried for a
long time over the storm that had raged over the lake for
hours. The nurse consoled the sailor/oar [3], saying that
he would soon be well again. The sailor/oar complained
of a bad headache that would not go away. The nurse gave
the sailor/oar [5] a large dose of aspirin. The sailor/oar
thanked her and fell asleep.

Figure 2: Story from Nieuwland and van Berkum, repe-
tition experiment (translated and edited). Times when
N400 responses were recorded are numbered, in bold.

We ask if the same is true of pre-trained LMs:
can they adapt to entities that are animate at the
token-level, despite being typically inanimate? Or
is their processing of animacy limited to a simple
type-level understanding? To answer this question,
we replicate these studies with pre-trained LMs,
using their surprisal to model N400 responses.

We replicate three experiments: Nieuwland and
van Berkum’s repetition experiment; their con-
text experiment; and Boudewyn et al.’s adapta-
tion experiment.3 For each, we first explain the
original study. Then, we explain how we adapt the
experiment for LMs. Finally, we report our results
and compare them the original study’s results.

5.1 Repetition Experiment

Original Study In Nieuwland and van Berkum’s
first experiment, participants listened to Dutch sto-
ries that contained either a typical, animate entity
or an inanimate entity behaving as if it were ani-
mate (Figure 2). Participants’ N400 responses were
measured at the 1st, 3rd, and 5th mentions of the
entity (in Figure 2, either oar or sailor, in bold).

Nieuwland and van Berkum found that partic-
ipants had a moderate N400 response to the first
mention of a typically animate entity, and a low
response on subsequent mentions. In contrast, par-
ticipants initially had a high N400 response to the
atypically animate entity. However, by the 3rd and
5th mentions thereof, their N400 responses were
so low as to be statistically indistinguishable from
the responses to mentions of the animate entity
in the same contexts. Thus, while humans were
initially surprised by the atypically animate entity,
they quickly adapted to the situation, and found it
no more surprising than typically animate entities.

3In Appendix C, we replicate Boudewyn et al.’s English
version of Nieuwland and van Berkum’s context experiment
with LMs; our results are identical to those of Section 5.2.

t1 t3 t5 t1 t3 t5 t1 t3 t5 t1 t3 t5 t1 t3 t5 t1 t3 t5 t1 t3 t5 t1 t3 t5 t1 t3 t5 t1 t3 t5

GPT-2

Small

GPT-2

Med

GPT-2

Large

GPT-2

XL

OPT

2.7B

OPT

6.7B

OPT

13B

LLaMA

7B

LLaMA

13B

LLaMA

30B

0

5

10

15

20

Inanimate Surprisal Animate Surprisal

Repetition Experiment Surprisals

Model and Timestep

Surprisal

(bits)

Figure 3: Mean repetition experiment surprisal. Inan-
imate surprisal is initially higher, but both surprisals
decrease rapidly after T1, becoming near identical.

Our Experiment We model N400 responses
with LM surprisal, as discussed in Section 2.2.
For each of the 60 examples, we measure the sur-
prisal of the animate and inanimate entity given the
context at each timestep. For example, to model
the inanimate N400 response at T1 in the exam-
ple from Figure 2 given a model pθ, we compute
− log2 pθ(oar|A nurse was talking to the). Then,
we compute the mean surprisal of examples con-
taining animate and inanimate entities separately.

Since the original stimuli are in Dutch, we trans-
late them to English, to make them compatible with
the English LMs.4 We do so using DeepL;5 transla-
tions were checked by a native Dutch speaker. We
then manually post-edited each stimulus to ensure
it was cartoon-like and contained inanimate charac-
ters that violated typical animacy constraints in the
1st, 3rd, and 5th sentences of the stories.6 Because
we preserve the relevant aspects of the stimuli we
expect the trends in N400 responses to be the same.

Results All models capture broad trends in hu-
man N400 responses well (Figure 3). At T1, mod-
els are very surprised by the inanimate entity, and
only moderately surprised by the animate entity. At
later timesteps, however, both entities’ surprisals
drop precipitously, to similar levels: models adapt
to both entities quickly, just like humans do.

Still, the raw results do not prove that models
are adapting to the extent that humans are. Since

4We perform these experiments in Dutch in Appendix B.
Dutch results are comparable to English results.

5https://www.deepl.com/translator
6We also edited stories for fluency, and to convert Dutch

cultural references to Anglophone counterparts. Edited En-
glish stimuli, to be released, are in the supplementary material.

https://www.deepl.com/translator
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Figure 4: Stat. significance of the difference between
animate and inanimate surprisal, by model and timestep

Nieuwland and van Berkum found that human
N400 responses in the two conditions were statisti-
cally indistinguishable by T3, we test if the same
is true for model surprisal. We use the Wilcoxon
signed-rank test for non-normally distributed data
(Wilcoxon, 1945) to determine if model surprisals
for animate and inanimate entities are distinct at
each timestep. We find (Figure 4) that like humans,
LMs have a statistically significant difference be-
tween animate and inanimate surprisals at T1. How-
ever, while there was no difference in humans at T3,
there are differences (p < 0.01) in most models;
only the largest exhibit none. At T5, differences
disappear in yet more large models. While models
can generally approximate trends in human N400
responses to atypical animacy, only the largest and
most powerful fully replicate human adaptation.

Overall, pre-trained LMs seem able to mimic
human-like adaptation to atypically animate enti-
ties. It is tempting to conclude that they have a
human-like understanding of animacy, that works
at the token rather than the type level. However, it
is equally possible that their decreased surprisal is
due to repetition, rather than a deeper understand-
ing of animacy. Transformer LMs even have a
low-level emergent structure, induction heads, ded-
icated to such copy-pasting (Olsson et al., 2022).

Fortunately, Nieuwland and van Berkum shared
this concern: humans might generate lower N400
responses only because they had seen the atypically
animate token before. Thus, we also replicate their
context experiment, which avoids this issue.

5.2 Context Experiment

Nieuwland and van Berkum’s context experiment
showed that participants’ low N400 responses did
not stem from lexical repetition.

A girl sat next to a diamond who was always doing strange
things. The diamond told her that he liked to eat erasers. The
girl ignored the diamond and his stories. Then the diamond
said he also liked to sing songs. The diamond was quite
foolish/valuable but secretly also very funny. That’s why
she always sat next to him.

Figure 5: Story from Nieuwland and van Berkum, con-
text experiment (translated and edited). N400 responses
were recorded at the words in bold.
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Figure 6: Context experiment surprisals. With context,
the animate adjective is much less surprising; in the
contextless baseline condition, this is reversed.

Original Study As in the prior experiment, par-
ticipants read 60 Dutch stories containing an atyp-
ically animate entity; at the end of each story, the
entity was described using an adjective that was
either context-appropriate (and generally used for
animate entities) or context-inappropriate (but typi-
cal for the inanimate entity; Figure 5). The N400
response was measured at the adjective at the end
of the story (foolish or valuable). N400 responses
for the context-appropriate animate adjective were
far lower than those to the entity-appropriate inani-
mate adjective, showing that the first experiment’s
effects were not caused by lexical repetition.

Our Experiment We calculate the surprisal at
the animate and inanimate adjective for each of the
60 stories. We also compute baseline surprisals,
the surprisal of the inanimate adjective without the
entire story context, to show they are indeed high:
e.g. − log2 pθ(foolish|The diamond was quite).

Results For all models, mean surprisal of the
animate adjective is much lower than that of the
inanimate adjective (Figure 6). This is significant
in all cases (p < 0.01; Wilcoxon signed-rank test).
Moreover, the animate adjective is assigned higher
probability in almost all cases—over 90% for large



A lucky fellow/peanut had a big smile [1] on his face. The
fellow/peanut was amazed [2] about his good fortune. Just
now he had won the jackpot of two million dollars. The
fellow/peanut was elated/salted and who could blame him.

Figure 7: Story from Boudewyn et al. (2019). N400
responses were recorded at the words in bold.
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Figure 8: Adaptation experiment surprisals. Inanimate
surprisal starts higher; the gap shrinks for larger LMs.

models. This mirrors the human trend: the N400 re-
sponse to the context-appropriate animate adjective
was much lower than the response to the entity-
appropriate inanimate adjective. In the contextless
baseline situation, the inanimate adjective receives
a much lower surprisal than the animate adjective.
Like humans, models use context and overcome
their lexical knowledge regarding the traits can ap-
ply to animate and inanimate entities.

5.3 Adaptation Experiment

We now replicate Boudewyn et al.’s adaptation ex-
periment, which combines the strengths of both
prior experiments. Like the first, it captures adapta-
tion over time; like the second, it avoids the poten-
tial issues of repetition.

Original Study The adaptation experiment paral-
lels the previous experiments. Participants listened
to 120 English-language stories containing either
a typically or atypically animate entity (Figure 7).
Participants’ N400 responses were measured at the
first content verb of the first two sentences of each
story. These verbs signal that their subject is (per-
haps atypically) animate, although they are notably
not the same in each sentence. Findings mirrored
those of Nieuwland and van Berkum: there was a
sharp drop in N400 response at between the two
timesteps in the inanimate scenario.

Our Experiment For each of the 120 stories, we
calculate the surprisal at the two critical verbs, in
the animate and inanimate case.

Results The results of the adaptation experiment
(Figure 8) might appear starkly different from those
of the repetition experiment. As before, surprisal
at the critical word drops in the inanimate case,
though only slightly. But in the animate case, sur-
prisal remains constant or increases.

These results are in fact consistent with our ear-
lier findings. The inanimate surprisal drop indicates
that the short context sufficed to convince models
of the entity’s animacy. Moreover, the fact that sur-
prisal does not drop in the animate case suggests
that models are reacting specifically to the contex-
tual cues that the inanimate entity entity is animate,
as opposed to the context more generally. The im-
portance of model size is also consistent: stronger
models have a smaller gap between animate and
inanimate surprisals at T2. Although this gap is
still significant for current models, trends indicate
that stronger models may eliminate it.

5.4 Discussion

Across experiments, models replicate broad trends
in human N400 responses. Stronger models repli-
cate human results better, with lower surprisals at
inanimate entities. Do they thus process animacy
more like humans? We caution that low surprisals
are not always desirable for cognitive modeling, as
surprisal from LMs can underestimate processing
difficulty in terms of reading time (van Schijndel
and Linzen, 2021; Arehalli et al., 2022; Oh and
Schuler, 2023); this may be because even relatively
small LMs can predict next words as well as hu-
mans (Goldstein et al., 2022). Stronger LMs may
only be better models of animacy processing in this
situation because lower surprisals are desirable.

Regardless of the effects of model size, another
question remains: do these positive results indicate
that these LMs understand animacy? We cannot
be certain: there exist mechanisms by which trans-
former LMs could perform well without any deep
understanding of animacy. In the repetition exper-
iment, models could use a copying mechanism to
reduce their surprisal at repeated entities. In the
context and even adaptation experiment, models
could rely on the context, while ignoring the inani-
mate entity. This is a real concern: Michaelov et al.
(2023) construct a (simple) model that does this.

In both cases, context is the complicating factor:
LMs might exploit shallow context cues to sim-
ulate animacy processing effects, without having
any real internal model of animacy. To investigate
this question further, we study LMs’ reactions to



atypically animate entities in a low-context setting.

6 Low-Context Atypical Animacy
The previous experiments have shown that LMs
can adapt in scenarios with atypically animate enti-
ties; however, LMs could have exploited shallow
context features to do so, without any specific un-
derstanding or representation of animacy. We now
investigate the extent to which LMs can leverage
cues in the context by testing their behavior on very
short sentences exhibiting atypical animacy.

Dataset We craft a set of short incomplete sen-
tences that describe an atypically animate entity
(Table 2). The sentences are designed to elicit a
critical next word—an adjective or a verb—that
indicates if the LM treats the entity as animate. For
example, if an LM continues “The boat snored and
started to” with the verb “dream” this indicates that
the boat is animate; continuing with “sink” does
not. Unlike in prior experiments, these sentences
provide only one clue indicating atypical animacy.

We create this dataset by defining prompts and
filling them with nouns and verbs we sample from
a predefined set. We sample from 181 nouns that
humans rated as not very animate, but highly con-
crete; non-concrete inanimate nouns (e.g. “fear”)
cannot become animate, except metaphorically. We
use concreteness ratings from Wilson (1988), and
animacy ratings from VanArsdall and Blunt (2022).

For the verbs, we use a manually-filtered set of
191 verbs that imply their subject is animate, from
Ji and Liang (2018). Each verb implies that its sub-
ject is animate for either psychological or physical
reasons; e.g. think is psychological while walk is
physical. Each verb co-occurs with human subjects
at a high, high-mid, or mid frequency. We create
a dataset of 10,000 items (Table 2) by sampling
prompts, nouns, and verbs.7

Experiment We run all LMs on the dataset. For
each example, we evaluate whether the LM treats
the entity in that example as animate by compar-
ing the LM’s output distribution to reference dis-
tributions. If our original sentence is O =“The
chair spoke and began to”, our inanimate reference
is I =“The chair began to”, while our animate
reference is A =“The [human] began to”, with a
randomly sampled human entity. We indicate via
DKL(A||O) the divergence between the next-word
distributions given A as context, and given O as

7A list of prompts, nouns and verbs is in Appendix D. The
full dataset, to be released, is in the supplementary material.
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Figure 9: KL Divergence between atypically animate
(O) and animate (A) / inanimate (I) references. Error
bars (95% CI) are marked, but extremely small. The
lower the bar, the more similar the distributions.

context, with other KL divergences defined analo-
gously. We focus in particular on DKL(A||O) as
animacy divergence; lower animacy divergence
implies a more “animate” distribution.

Quantitative Analysis Figure 9 shows KL diver-
gences between the atypically animate sentence (O)
and the reference distributions (A/I). For all mod-
els, the divergence between the inanimate and ani-
mate references (purple) is the highest. Although
only the added verb separates the atypically ani-
mate sentence from the inanimate reference, this
leads its divergence with the animate reference
(red) to be consistently lower; that is, adding the
verb significantly increased the distribution’s ani-
macy. For some large models, the animacy diver-
gence is the lowest of their three divergences: the
atypically animate distribution is even more simi-
lar to the animate distribution (red) than inanimate
distribution (blue). However, the larger LLaMA
models surprisingly do not follow this trend; they
instead have a slightly higher animacy divergence.
Still, all model behavior clearly shifts with the ad-
dition of the animacy-implying verb.

To understand the cause of this shift, we analyze
the data with respect to the known factors that vary
between our prompts, to discern which affected
model behavior. Results were similar across mod-
els, so we display results for one model, LLaMA-7B.

We first analyze the effect of our prompts, focus-
ing on the difference between those that elicit verbs
(“and began to. . . ”) and those that elicit adjectives
(“and was very. . . ”). We find (Figure 10, A) that
verb-eliciting prompts produce lower animacy di-
vergences than those that elicit adjectives.



Sentence Rank #1 #2 #3 #4 #5
The ion misunderstood and began to 1 get cry run walk feel
The firewood replied and was very 26 helpful happy friendly good pleased
The road gulped and became very 9977 narrow stee dark wide rough
The telephone waited and began to 10000 ring be d vu b

Table 2: Dataset examples and their top-5 continuations (sometimes partial words). The example at rank n has the
nth lowest animacy divergence (of 10,000). Low-divergence examples have animate continuations; high-divergence
ones are stereotypical and inanimate. The top two examples use psychological verbs; the bottom two, physical.
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Figure 10: Left: Distribution of animacy divergences by prompt type, verb category, and verb-human co-occurrence.
Right: Distribution of mean animacy divergences per-verb and per-noun. Each point is one verb (or noun).

We then analyze the effects of verbs and nouns
on the sentence. For each verb or noun, we cal-
culate the mean animacy divergence of sentences
containing it. We observe a wide spread per verb
and per noun (Figure 10, D and E), suggesting
that they both impact model behavior. We then
study the factors affecting individual nouns’ and
verbs’ divergences. We find that psychologically
animate verbs have significantly lower divergence
than physically animate verbs; they produce more
animate behavior from LMs (p < 0.01, T-test; Fig-
ure 10 B). Sentences with verbs that had higher
co-occurrence with humans had a lower divergence
than those with a lower co-occurrence (p < 0.01;
Figure 10 C),8 though the effect size is rather small.
For the nouns, however, neither animacy nor con-
creteness explains trends in animacy divergence.

Qualitative Analysis We also qualitatively ver-
ify that sentences with low animacy divergence
have more animate continuations than those with
high divergence. We sort examples by divergence
and examine their top-5 continuations, focusing on
examples at the top and bottom of the list.

Table 2 shows that animacy divergence aligns
well with the qualitative animacy of continuations.
Low-divergence examples have entities that cry, or
are friendly. High-divergence ones have continua-
tions stereotypical for the inanimate entity: a road
becomes narrow, or a telephone begins to ring.

8Significant for all three groups (F-test), and pairwise ex-
cept for high-mid and mid (T-test).

Discussion Results show that LMs can adapt to
atypical animacy even given limited cues: one verb,
rather than an entire story. They also suggest that
LMs do not require a long context to adapt; how-
ever, the factors that regulate this adaptation are
complex. Some, like the choice of prompt, bear
no clear relation to animacy; others, like the nouns,
show no clear pattern in how they affect model re-
sponses. Still, some interpretable factors exist. Psy-
chological verbs may induce more animate continu-
ations because they indicate animacy more strongly.
While an inanimate object might metaphorically en-
gage in physical activities like dance, they seldom
marry or volunteer. These psychological words
may thus serve as stronger signals of animacy.

7 Conclusions

Though animacy appears only indirectly in English,
pre-trained LMs learn to not only respect typical
animacy, but also adapt to atypical animacy, even
when indicated by only one word. LM adaptation
still lags behind that of humans, but large mod-
els increasingly shrink the gap. We conclude that
LMs generally respond to animacy like humans;
however, our behavioral methodology can yield no
conclusions about how models achieve this. Re-
lated work on world models (Li et al., 2021, 2023),
suggests that by using causal techniques to search
for internal structure in models, future work could
not only demonstrate that LMs respond well to
animacy, but also explain how they do so.



Limitations
In this study, we use primarily behavioral experi-
ments. These are suitable for comparing models
to human data, but do not reveal the causal mecha-
nisms by which LMs process animacy. In order to
discover these, it would be more appropriate to use
causal interventions or similar techniques, which
we do not explore.

Considering the limitations of behavioral tech-
niques, this study is still limited by the fact that it
did not collect human data. We translate Nieuw-
land and van Berkum’s stimuli to English, but do
not test them again on native English speakers; the
N400 responses to Dutch data could differ from
N400 responses to English data, even though we
assume they will be similar. Similarly, studying
human responses to our low-context atypical ani-
macy stimuli (Section 6) would better inform our
analysis of LM performance.

Ethics Statement
This work presents only minor ethical concerns. A
particular concern is one of bias and stereotypes;
the original stories in Nieuwland and van Berkum
(2006) do contain stereotypes. We attempt to soften
these in our translations, but some stereotypes are
still present in the translated material.

More generally, LMs such as those analyzed
must be used with caution. Although such models
achieve high performance on language-based tasks,
this performance does not necessarily stem from
genuine linguistic understanding. Moreover, mod-
els can not only perpetuate harmful biases present
in their training data, but also create misleading or
false output.
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Figure 11: Repetition experiment surprisals. Surprisal
drops rapidly after T1, with inanimate surprisal drawing
close to animate surprisal.
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Figure 12: Context experiment surprisals. With context,
the animate adjective is much less surprising; in the
contextless baseline condition, this is reversed.

B.1 Results: Repetition Experiment

The results of the repetition experiment in Dutch
(Figure 11) are rather similar to those in English.
As before, the surprisal starts out high for both
animate and inanimate entities (though higher for
the latter). The difference between these two is
less pronounced than in English. The surprisal
drops rapidly at T3, and again at T5. Unlike in
English, there are no strong model-wise trends,
whereby stronger models have a lower difference in
surprisals. And in all cases, the difference between
the two conditions at T5 is statistically significant.

B.2 Results: Context Experiment

Again, the results of the Dutch experiment (Fig-
ure 12) are much like the English results. Surprisals
at animate adjectives are much lower than those at
inanimate adjectives; however, in the baseline con-
dition, which lacks context, the trend is reversed.

A lucky peanut had a big smile on his face. The peanut was
amazed about his good fortune. Just now he had won the
jackpot of two million dollars. The peanut was elated/salted
and who could blame him.

Figure 13: Story from Boudewyn et al. (2019), context
experiment. N400 responses were recorded at the words
in bold.
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Figure 14: Surprisals for animate and inanimate adjec-
tives in the normal and baseline condition

C Boudewyn et al.: English Context
Experiment

Original Study Much like in Nieuwland and van
Berkum (2006), Boudewyn et al. (2019) also mea-
sured participants’ N400 responses to adjectives
at the end of each story (Figure 13). Each adjec-
tive was either typical for animate entities (and thus
context-appropriate) or typical for the inanimate en-
tity in question (but context-inappropriate). N400
responses were much lower in the former case than
in the latter.

Experiment As in the earlier context experiment
(Section 5.2), for each of the 120 stories, we cal-
culate the surprisal at the animate and inanimate
adjective. We also compute baseline surprisals, de-
fined as the surprisal of the critical adjective given
only the sentence containing it as context.

Results The results of the English context ex-
periment (Figure 14) are like those of the earlier
context experiment (Section 5.2). Like before, sur-
prisal at the animate adjective is much lower than
surprisal at the inanimate adjective; in the baseline
condition, this trend is reversed.

D Low-Context Animacy Dataset Details
This section contains lists of the prompts, nouns,
and verbs used in constructing this dataset. For



the full dataset, to be released if accepted, see the
supplementary material.

D.1 Prompts

• The [noun] [verb] and began to

• The [noun] [verb] and started to

• The [noun] [verb] and was very

• The [noun] [verb] and became very

D.2 Nouns

accordion, ambulance, amplifier, appliance, arrow,
automobile, axe, bagpipe, balloon, bandage, ban-
ner, barrel, basket, bin, biscuit, blanket, blossom,
blouse, boat, bomb, book, bottle, bouquet, bra,
bracelet, bread, brush, bubble, bucket, buckle, bul-
let, button, cake, camera, candle, candy, cane, can-
non, canoe, cape, cart, casket, chisel, chocolate,
clarinet, clock, clothing, coat, cocktail, coffin, coin,
collar, corpse, dagger, dart, desk, dime, dress, en-
gine, envelope, ferry, fiddle, firewood, flask, flute,
football, fruit, furniture, glass, glove, goblet, gown,
hailstone, hairpin, hammer, harp, hat, helmet, hose,
jar, keg, kilt, knife, lamp, lantern, lens, limou-
sine, mallet, map, mattress, medallion, microscope,
mirror, missile, moccasin, nail, napkin, necklace,
needle, nickel, nightgown, oar, ornament, oven,
overcoat, pants, pearl, pencil, pendulum, penny,
phone, photograph, piano, pie, pillow, pipe, plank,
pot, propeller, prune, purse, quilt, radio, record,
refrigerator, ribbon, rifle, ring, rope, rug, sandal,
satchel, saxophone, scissors, scroll, shawl, shield,
shirt, shoe, ski, skull, sleigh, sock, sofa, spoon,
statue, steak, stove, submarine, sword, tablespoon,
telephone, telescope, thermometer, thorn, thread,
ticket, tie, timepiece, tractor, tray, tripod, trombone,
truck, trumpet, tube, tweezers, twig, typewriter,
umbrella, van, vase, vehicle, vest, violin, wallet,
wheel, whistle, wig, yacht, zipper,

D.3 Verbs

D.3.1 Physical

High Co-Occurrence With Human Subjects
stammer, grimace, mumble, drawl, frown, gasp,
yell, nod, smile, laugh, shrug, sob, grin, kneel,
wince, whisper, sigh, giggle, squint, murmur, doze,
fiddle, gesture, mutter, faint, gulp, flinch, chuckle,
drink, weep, stare, grunt, listen, watch, fumble,
shiver, pace, lean, blush, shout, gaze, walk, sit,
sleep, dine, pant, glare, clap, stumble, snore, shave,
wave, omit, sniff, piss, cough, wail, grumble,

breathe, snort, spit, eat, duck, die, swallow, growl,
blink, inhale, bellow, starve, crouch, yawn, step,
squat

High-Mid Co-Occurrence With Human Sub-
jects pounce, scream, flee, shudder, wander,
shriek, stagger, wink, sing, whistle, jog, limp, hiss,
trot, jump, bathe, dance, paint, ramble, shower,
drown, recover, pack, sweat, bow, flush, crawl

Mid Co-Occurrence With Human Subjects
bark, swim, bleed, howl

D.3.2 Psychological

High Co-Occurrence With Human Subjects
think, know, wonder, remember, guess, exclaim,
retort, marry, notice, understand, hurry, pray, medi-
tate, swear, forget, enquire, realise, confess, apolo-
gise, hesitate, suspect, reply, talk, sneer, cry, dream,
moan, ponder, revel, learn, scowl, retire, snarl,
groan, speak, complain, beg, wait, preach, grieve,
read, plead, volunteer, answer, curse, choose, panic,
chant, cheat, salute, emigrate, protest, visit, lament,
misunderstand

High-Mid Co-Occurrence With Human Sub-
jects consent, graduate, disagree, steal, mourn,
study, argue, search, insist, practise, interrupt, obey,
comment, concede, fight, applaud, enlist, worry,
teach, train, agree, struggle, rush, evacuate, object,
pay, pursue, hasten

Mid Co-Occurrence With Human Subjects
vote, invest, register

E Low-context Animacy: Evaluation
We first tried to classify potential next tokens as ani-
mate, inanimate, or neither; we could then compute
the probability assigned to each group. However,
classifying all next tokens was noisy: even with
resources like FrameNet or VerbNet (Baker et al.,
1998; Kipper et al., 2000), it was infeasible to deter-
mine if a verb implied that its subject was animate.


