Circuits can help explain transformer

language models' linguistic abilities

Learning to Agree: How Language Models Implement Subject-Verb Agreement

Michael Hanna

m.w.hanna@uva.nl

University of Amsterdam
Institute for Logic, Language, and Computation Amsterdam, Netherlands

区 UniVERSITY of Amsterdam

Language Models

NLP relies on pre-trained language models (LMs), neural models that predict the next word given a context. LMs possess linguistic abilities, like subject-verb agreement (SVA):
 $\mathrm{p}($ barks $)=0.1$ $p($ runs $)=0.05$ p p bark $)=0.0$.. p run) $=0.00 \ldots$

Interpretability and Circuits

We want an explanation of SVA that is:

- low-level: at the attention head/MLP level
- causal: we can prove it works
- comprehensive: from inputs to outputs

We thus search for a circuit: a minimal computational subgraph of our LM that suffices to perform SVA. How to find one? To start, we visualize the comp. graph of a toy LM.

We then ablate edges, replacing one activation (MLP1->MHA2) with another input's.

If model behavior changes when we ablate an edge, it's important; otherwise we can delete it. We do this for all model edges. We then assign semantics to nodes/edges.

A circuit for SVA

We investigate SVA in the Pythia-160m model [1]. We use automatic circuit detection [2], which finds the following circuit:

Attention head 6.4 clearly transmits number information to MLPs 8-10 and the logits. We apply the logit lens [4] to head 6.4, and find it boosts words that agree with the subject:

- are	\bullet aren
- were	\bullet weren
- sont	\bullet hebben

These words agree with the example's plural subject across languages; sont and hebben are plural-form verbs in French and Dutch.

Key Takeaways

- Circuits provide low-level explanations of model behavior at the sub-layer level.
- Zooming into LMs yields clearer insights, potentially even algorithmic explanations.
- Next time you study LM representations, ask where the info in the representations comes from. Why / how do LMs create it?

The Transformer Architecture

How LMs Learn SVA

I want to understand how LMs' processing changes during training. Do circuits only change with performance? Or are they dynamic even when performance flatlines? I conducted a behavioral evaluation of Pythia-160m's SVA abilities

Learning occurs between steps 100 and 10,000; elsewhere, performance is static.

Data and Metric

Our SVA dataset is a pre-existing dataset [3] of sentences with challenging constructions, e.g. center embedding. We run ACDC on same-structure subsets of this. We measure model behavior thus. Let x_{i} be a sentence, and A_{i}, D_{i} the sets of to kens that agree / disagree with its subject. For each x_{i} in our dataset, we measure:

$$
\sum_{a \in A_{i}} p\left(a \mid x_{i}\right)-\sum_{d \in D_{i}} p\left(d \mid x_{i}\right)
$$

References

