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Learning the consequences of actions

ACT-Thor: A Controlled Benchmark
for Embodied Action Understanding

in Simulated Environments
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Action Understanding

Embodied agents should understand their
actions’ effects on their environment. We
test model understanding via a new dataset!

Action: Toggle
Object: Sink

Action: Dirty
Object: Plate

Al2-Thor [1] is a platform where an agent
(robot) interacts with a virtual environment.
We use it to generate images for our dataset:
e Select an object; either pick up or place it.
e Record the before image of the object.

e Perform an action on the object

e Record the after image of the object.

before

We arrange images into contrast sets. Given
the “before-image” and action label, the
model must choose which “after-image” is
the true result from performing the given ac-
tion in the given scene.
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Evaluation

We use this dataset to evaluate SotA visual
encoders, as part of simple baselines that
take in the action and a representation of the
before-image, and predict a representation
of the after-image
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We test models on predicting the outcome
of actions on unknown objects or in un-
known scenes. Some generalize well to new
scenes, but none to new objects.

Action | Nearest neighbors (sorted)
break | dirty open toggle
close break  dirty put
dirty | break  pull open
drop push  pull pickUp

fill put pull throw
open dirty  break fill
pickUp | dirty fill break

pull put push throw
push pull  throw put
put throw  pull push

throw put  push pull
toggle | dirty break pull

We examine the action representations
learned by our models for semantic clusters

Takeaways

e \We can use virtual environments as con-
trolled settings for dataset generation!

e We create a dataset for learning actions
and consequences with Al2-Thor. Our task
Is easy for humans, with high agreement.

e However, the task is not as easy for simple
baselines, especially with new objects.
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Dataset Details

We amass a dataset of contrast sets.
Though small, this can be expanded, and
the data repurposed for other tasks.

Statistic Count
action-object pairs 403

before-i, action, after-i 11154

unique before-i 3746
unique after-i 11154
scenes 120
objects 62
actions 12

We solicit human annotations: accuracy is
81%, and agreement is 85%.

Model Details

Models extract visual features from the
before-image via MOCA [2] or CLIP [3].
The probability that a given after-image
Is correct is modeled as the similarity be-
tween the predicted representation and
after-image representation.
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Action Mafrices

Our first model, based on Baroni and Zam-
parelli (2010) [4], envisions actions as a
matrix that transform a scene.
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Our second and third models use a linear
layer or MLP to transform a joint image-
action embedding into a prediction vector.







