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Language Models
NLP relies on pre-trained language models
(LMs), neural models that predict the next
word given a context. LMs possess linguistic
abilities, like subject-verb agreement (SVA):
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Interpretability and Circuits
We want an explanation of SVA that is:
• low-level: at the attention head/MLP level
•causal: we can prove it works
•comprehensive: from inputs to outputs
We thus search for a circuit: a minimal com-
putational subgraph of our LM that suffices
to perform SVA. How to find one? To start,
we visualize the comp. graph of a toy LM.
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We then ablate edges, replacing one activa-
tion (MLP1->MHA2) with another input’s.
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If model behavior changes when we ablate
an edge, it’s important; otherwise we can
delete it. We do this for all model edges. We
then assign semantics to nodes/edges.
A circuit for SVA
We investigate SVA in the Pythia-160m
model [1]. We use automatic circuit detec-
tion [2], which finds the following circuit:
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Attention head 6.4 clearly transmits number
information toMLPs 8-10 and the logits. We
apply the logit lens [4] to head 6.4, and find
it boosts words that agree with the subject:
•are
•were
• sont

•aren
•weren
•hebben

These words agree with the example’s plu-
ral subject across languages; sont and hebben
are plural-form verbs in French and Dutch.
Key Takeaways
•Circuits provide low-level explanations of
model behavior at the sub-layer level.

•Zooming into LMs yields clearer insights,
potentially even algorithmic explanations.

•Next time you study LM representations,
ask where the info in the representations
comes from. Why / how do LMs create it?

The Transformer Architecture
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How LMs Learn SVA
I want to understand how LMs’ process-
ing changes during training. Do circuits
only change with performance? Or are
they dynamic even when performance
flatlines? I conducted a behavioral eval-
uation of Pythia-160m’s SVA abilities.
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Learning occurs between steps 100 and
10,000; elsewhere, performance is static.
Data and Metric
Our SVA dataset is a pre-existing dataset
[3] of sentences with challenging con-
structions, e.g. center embedding. We run
ACDC on same-structure subsets of this.
We measure model behavior thus. Let xibe a sentence, and Ai, Di the sets of to-
kens that agree / disagree with its subject.
For each xi in our dataset, we measure:

∑
a∈Ai

p(a|xi)−
∑
d∈Di

p(d |xi)
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