Language models’ processing of animacy

parallels human processing

Low-Context Adaptation

When Language Models Fall in Love:

In previous experiments, LMs had access

Animacy Processing in Transformer LMs

to longer contexts, which they could have

relied on to adapt. Can LMs adapt to atyp-
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triplets of sentences (O, /, A) like:
e O: The [chair] spoke and began to”

Animacy in Language (Models)

A nurse was talking to the sailor/oar [1] who'd been in a violent boating
accident. The sailor/oar cried for a long time over the storm that had raged
over the lake for hours. The nurse consoled the sailor/oar [3], saying that
he'd soon be well again. The sailor/oar complained of a bad headache that

wouldn’t go away. The nurse gave the sailor/oar [5] a large dose of aspirin.

¢ /: The [chair] began to”
e A: “The [woman] began to”

We compare distributions over atypically

Models also grow less surprised over time! animate continuations (p(w|0O)), typically

inanimate continuations (p(w/|/)), and typ-
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to animacy, capture this phenomenon?

Model and Timestep

Typlcal Ammacy : %"T.? GPT2 GPT2 GRT2 OFT OFT OFT LLaMA Liaba Lisba
Experiment 2: Could surprisal decrease be o Model

We test LMs’ animacy responses via BLIMP!: o
due to the repetition of the target word? We

Models prefer the acceptable sentence!

Alcguracy Performance on BLIMP Animacy Datasets
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Experiment 1: We replicate Nieuwland and
van Berkum'’s (2006) study?, which showed
humans are initially surprised by (T1), but
quickly adapt to (T3, T5) atypical animacy.
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In animate-implying contexts, humans and
models expect an animate adjective!
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Conclusions

e Models respect animacy constraints, much
like humans, in typical animacy scenarios.

e They also adapt to atypical animacy.

e Adaptation occurs even in cases without
repetition, and in very short contexts.

Acc? Sentence replicate another study without this flaw: Dk (AllO) is lower than Dy (Al[l); the
: atypically animate context yields more
T \/ NaOmI had Cleaned d fork. A girl sat next to a diamond who was always doing strange things. The di- . . . .
| - | animate continuations, suggesting mod-
T X That book had cleaned a fork. amond told her that he liked to eat erasers. The girl ighored the diamond
. . and his stories. Then the diamond said he also liked to sing songs. The e|S can ada pt even Wlth ShOrt COnteXtS.
P \/ Llsa Was kISSGd by the bOYS. diamond was quite foolish/valuable but secretly also very funny.
P X |Lisa was kissed by the blouses.

But adaptation is inconsistent; only some

contexts yield animate continuations:

e The ion misunderstood and began to:
get, cry, run, walk, feel

e The firewood replied and was very: help-
ful, happy, friendly, good, pleased

e The road gulped and became very: nar-
row, stee, dark, wide, rough

e The telephone waited and began to:
ring, be, d, vu, b

Model and Dataset Details

We test autoregressive English LMs from
the GPT-2, OPT, and LLaMA families.

We translate Nieuwland and van Berkum's
(2006) data” into English. Our paper repli-
cates Boudewyn et al's (2019) animacy
N400 study?, originally in English.
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